ArtículoAño:  2021 

Autor(es):  Tarry D. R., Essink S., Pascual A., Ruiz S., Poulain PM., Özgökmen T., Centurioni L. R., Shcherbina A., Farrar T. J., Mahadevan A. and D'Aasaro E 

Título:  Frontal Convergence and Vertical Velocity measured from Drifters in the Alboran Sea 

Revista:  Journal of Geophysical ResearchOceans 

ISSN:  21699275 

Volumen:  126 

Número:  4 

Páginas:  

D.O.I.:  10.1029/2020JC016614 

Web:  https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JC016614 

Resumen:  Horizontal and vertical motions associated with mesoscale (10–100 km) and submesoscale (1–10 km) features, such as fronts, meanders, eddies, and filaments, play a critical role in redistributing physical and biogeochemical properties in the ocean. This study makes use of a multiplatform data set of 82 drifters, a Lagrangian float, and profile timeseries of temperature and salinity, obtained in a ∼1m/s semipermanent frontal jet in the Alboran Sea as part of CALYPSO (Coherent Lagrangian Pathways from the Surface Ocean to Interior). Drifters drogued at ∼1m and 15m depth capture the mesoscale and submesoscale circulation aligning along the perimeter of fronts due to horizontal shear. Clusters of drifters are used to estimate the kinematic properties, such as vorticity and divergence, of the flow by fitting a bivariate plane to the horizontal drifter velocities. Clusters with submesoscale length scales indicate normalized vorticity ζ/f > 1 with Coriolis frequency f and normalized divergence of (1) occurring in patches along the front, with error variance around 10\%. By computing divergence from drifter clusters at two different depths, we estimate minimum vertical velocity of (−100 m day−1) in the upper 10 m of the water column. These results are at least twice as large as previous estimates of vertical velocity in the region. Location, magnitude, and timing of the convergence are consistent with behavior of a Lagrangian float subducting in the center of a drifter cluster. These results improve our understanding of frontal subduction and quantify convergence and vertical velocity using Lagrangian tools. 


Personal relacionadoAnanda Pascual AscasoSimón Ruiz ValeroDaniel Rodriguez TarryDepartamentos relacionadosOceanografía y Cambio GlobalProyectos relacionadosWHOI (139.8)Grupos de investigación relacionadosTecnologías Marinas, Oceanografía Operacional y Costera
